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Abstract

Sorting of superconducting high-gradient quadrupoles in
the LHC interaction regions with the vector sorting scheme
is found to be quite effective in enlargement of the dynamic
aperture and improvement of the linearity of the phase-
space region occupied by beams. Since the sorting is based
on the local compensation of multipole field errors, the ef-
fectiveness of the sorting is robust.

1 INTRODUCTION

The beam dynamic of the LHC during collisions is domi-
nated by the magnetic field errors in superconducting high-
gradient quadrupoles (MQX) in the triplets of the LHC in-
teraction regions (IRs). Sorting of magnets, in which the
magnets are installed according to measured field errors so
that the errors on different magnets are partially compen-
sated with each other, has been the easiest way in many
cases to reduce the detrimental effects of the random er-
rors without introducing complications. The difficulty to
achieve such an effective self compensation of the random
errors is to find an optimized magnet configuration which
can significantly increase the stability domain of beams,
since even for a small number of magnets, the total num-
ber of possible magnet arrangements is exceedingly large.
During the last decade, several sorting strategies have been
proposed and studied extensively [1-8]. Most of them
are, however, effective when only one multipole compo-
nent in the error field is dominant. Recently, a vector sort-
ing scheme has been developed for a systematical control
of many multipole components [7,8]. Applications of the
vector sorting scheme to arc dipoles as well as insertion
quadrupoles of large storage rings have been found to be
quite effective in increasing the dynamic aperture and im-
proving the linearity of the phase-space region occupied by
beams even when more than one multipole components are
responsible for the aperture limitation [7,8]. In the low-�

insertion triplets of the LHC IRs, excursion of many beam
particles from the magnetic axis is very large because of
large�-functions and beam separations during collisions.
This makes many high-order multipoles of the field errors
in MQX important. On the other hand, large�-functions in
the triplets result in a very small phase advance within each
triplet and the self compensation of the field errors among
the quadrupoles can be relatively easy even though a lim-
ited number of interchangeable quadrupoles are available
for the sorting. In this report, the effectiveness of the sort-
ing of MQX has been studied with the latest FNL and KEK
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reference harmonics (version 2.0) [9].

2 SORTING STRATEGY

The LHC has four interaction points (IPs): IP1 and IP5 are
high luminosity points (�� = 0:5 m) and IP2 and IP8 low
luminosity points. The layout of the inner triplets of the
four IPs is almost identical. Each inner triplet comprises
four MQX of which two outer quadrupoles, Q1 and Q3,
are 6.3 m long (long MQX) and the inner two, Q2A and
Q2B, are 5.5 m long (short MQX). Due to the large�max

(� 4700 m) in the inner triplets of IP1 and IP5, the field
quality of MQX of IP1 and IP5 is far more important than
that of IP2 and IP8. Therefore, the sorting primarily fo-
cuses on the selection of MQX for IP1 and IP5. Since the
phase advances are close to zero within each inner triplet of
IP1 and IP5, the vector sorting with2�-cancellation [7,8]
can be used for the four MQX in each triplet. The sort-
ing of MQX must, however, observe several constraints.
First, of a total of 16 long and 16 short MQX in four IRs,
8 long and 8 short MQX will be built in Fermilab and the
others will be built in KEK. Due to hardware constraints
such as differences in cryostats, the FNL-made and KEK-
made MQX may not be interchangeable. Moreover, after
cold measurements, Q2A and Q2B will be welded together
so that they are not be separable afterward. Due to a large
systematicb10 in KEK-made MQX, two different configu-
ration, mixed and unmixed configuration, for installation of
MQX are currently under consideration. Sorting of MQX
are therefore studied with both of these configurations. In
the unmixed configuration, the FNL-make MQX are as-
sumed to be installed in the triplets of IP1 and IP2, and
the KEK-made MQX in the triplets of IP5 and IP8. In the
mixed configuration, four MQX in each triplet are mixed
with two quadrupoles from Fermilab and another two from
KEK. In this case, the FNL-made MQX are installed at
Q2A and Q2B and KEK-made MQX at Q1 and Q3. For
the unmixed configuration, the sorting has to be done with
8 long MQX and 4 pairs of short MQX for each pair of high
and low luminosity IPs. For the mixed configuration, on the
other hand, there are 16 FNL-made long MQX and 8 pairs
of KEK-make short MQX for sorting. It should be noted
that even with this small number of magnets, the number
of possible magnet configurations is still very large.

To have a better understanding of the sorting scheme for
MQX, let’s examine the section map of each inner triplet.
Let (~�0; ~�0) and (~�4; ~�4) be the normalized phase-space
variables just before Q1 and immediately after Q3, respec-
tively. Since the phase advances in each triplet are almost
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where�~� is the nonlinear perturbation due to the multi-
pole field errors in the four MQX. In the thin-lens approx-
imation, the field errors are simply expressed as nonlinear
kicks. Due to large variations of�-functions across the
MQX, each MQX has to be sliced into a number of pieces
in order to use the thin-lens approximation. For thejth
piece of theith MQX, the kick can then be written as
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whereN is the maximal order of multipoles considered.
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errors, and
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where (�x, �y) are the�-functions at thejth piece of the
ith MQX and(�xij ; �yij) is the closed-orbit offset in hor-
izontal and vertical direction due to a crossing angle. The
first-order perturbation of�~� in the transfer map (5) is then
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where the summation overj is to sum up all the kicks
of a MQX. If (�~�)1 can be minimized by sorting the
quadrupoles, the multipole field errors in four MQX of
each triplet will be partially compensated. In order to
examine the magnitude of nonlinear perturbations, a 4N -

dimensional vector~S(i) =
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is used to rep-

resent the nonlinear error field on each quadrupole, which
is defined by
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for n = 1, ...,N . The magnitude of the first-order pertur-
bation due to the field errors of theith MQX at phase space

locations of~� = ~�0 is defined by the normal of~S(i),
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and the magnitude of the first-order perturbation in the sec-
tional map of a triplet is then
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The sorting of MQX is thus based on the minimization of
j(�~�)1j, where�0x = �0y = �0 is a parameter to optimize
the sorting.�0 can be chosen initially in such a way that
it corresponds to the dynamic aperture of the lattice with-
out sorting. The sorting can then be optimized by tuning
�0. It should be noted that the minimization of the normal
of the vector sum of all error fields in each triplet in Eq.
(6) effectively excludes unintended cancellation of the er-
ror fields between different orders of multipoles. Any sort-
ing scheme relying on such cancellation (e.g., cancelling
sextupole field with decapole field) is harmful as the effect
of sorting will then strongly depend on phase-space loca-
tions. Since the feed-down effect of high-order multipoles
due to an angle crossing of beams at IPs are different for
two counter-rotating beams, the sorting has to be done si-
multaneously with two counter-rotating beams.

3 EFFECT OF THE SORTING ON THE
BEAM DYNAMICS

The LHC collision lattice V5.0 is used in this study. Only
the field errors of MQX are included. The random multi-
pole components of MQX are chosen with Gaussian dis-
tributions centered at zero and truncated at�3�bn+1 or
�3�an+1 where�bn+1 and�an+1 are the rms value of the
nth-order normal and skew multipole coefficient, respec-
tively. Fermilab and KEK reference harmonics of version
2.0 is used in this study. The uncertainty of a systematic
error is simply added to the systematic error in such a way
that it maximizes the systematic error. The crossing an-
gle of two counter-rotating beams is taken to be 300�rad
and the fractional parts of horizontal and vertical tunes are
�x = 0:31 and�y = 0:32, respectively. Tracking of parti-
cle motion has been done without synchrotron oscillations
and momentum deviations. The dynamic aperture (DA)
has been calculated with105-turn tracking. To improve the
statistical significance of the simulations, we used 100 dif-
ferent samples of random multiple components generated
with different seed numbers in a random number generator
routine. All the multipoles up to 9th order in the field errors
of MQX are included.



Table 1: Dynamic aperture of 5 worst cases in 100 random samples of LHC collision lattice with the mixed configuration.
�x = 0:31, �y = 0:32, and the crossing angle is300�rad. The unit of dynamic aperture is�.

Case 9 Case 39 Case 50 Case 26 Case 46 hDAi50 (DA)min

Original DA 6.5 6.7 6.7 6.8 7.0 8.0 6.5
2nd-order Global Correction 8.1 7.7 8.8 9.1 8.6 9.0 7.7
3rd-order Global Correction 10.1 10.0 9.9 10.7 9.8 10.2 9.2
4th-order Global Correction 10.7 10.7 10.6 10.8 10.6 11.7 9.6
5th-order Global Correction 11.3 11.0 10.6 11.0 10.9 11.3 10.1
6th-order Global Correction 11.4 11.9 10.6 11.0 10.9 11.6 10.3
Sorting (beam1) 12.0 10.0 12.8 10.8 10.0 11.0 9.0
Sorting (beam2) 10.0 11.0 9.2 9.6 10.5 10.3 9.0

Table 2: The same as Table 1 but with the unmixed configuration

Case 44 Case 47 Case 12 Case 5 Case 20 hDAi50 (DA)min

Original DA 5.5 5.6 6.1 6.9 6.8 8.0 5.5
2nd-order Global Correction 8.1 8.8 10.0 8.8 8.6 9.0 7.7
3rd-order Global Correction 9.6 9.4 10.0 10.3 9.9 10.2 9.1
4th-order Global Correction 10.5 10.2 10.8 10.9 10.6 11.0 10.0
5th-order Global Correction 12.2 11.0 11.3 11.6 11.1 11.5 10.3
6th-order Global Correction 12.3 11.2 11.7 12.1 11.9 12.0 10.4
Sorting (beam1) 12.4 10.6 13.3 10.4 9.5
Sorting (beam2) 11.3 10.0 13.2 11.4 9.0

Figure 1: Dynamic aperture of two counter-rotating beams
of fifty samples of the mixed configuration without the sort-
ing and nonlinear correctors for MQX. The number in each
block identifies each sample.

Figs. 1 and 2 plot the DA of two counter-rotating beams
of fifty samples with or without the sorting of MQX for
the mixed configuration. No any nonlinear corrector were
used in these cases. These fifty samples were the fifty worst
cases of the hundred random samples without the sorting

Figure 2: The same as Fig. 1 but with the sorting of MQX.

in regarding of the DA of beam 1. Without the sorting, the
smallest and the average DA of the fifty samples is6:5� and
8:0� for beam 1, and6:0� and8:9� for beam 2, where� is
the transverse beam size. After the sorting, the smallest and
the average DA for both beams are increased to more than
9:0� and10:0�, respectively. In Figs. 3 and 4, the percent-
age increase of the DA after the sorting is plottedvs: the
DA without sorting for the fifty samples of the mixed and



Figure 3: The increase of the DA after the sorting vs. the
DA without the sorting for two counter-rotating beams of
the fifty samples of the mixed configuration.

Figure 4: The increase of the DA after the sorting vs. the
DA without the sorting for beam 1 of the fifty samples of
the unmixed configuration.

unmixed configuration, respectively. It shows that, in gen-
eral, the smaller the unsorted DA, the larger the increase of
the DA after the sorting. For example, before the sorting,
two worst cases of the mixed configuration, case 9 for beam
1 and case 37 for beam 2, have a DA of about6�. After the
sorting, the DA becomes larger than9:5� for both cases,
which is more than 60% gain in the DA. As the DA without
the sorting increases, the gain of the DA after the sorting di-
minishes. It is understandable that if the original system is
already quite linear, the sorting will not result in a substan-
tial improvement. In Table 1 and 2, we list the DA with or
without sorting for five samples of the mixed and unmixed
configuration. These are the five worst cases in the 100 ran-

dom samples of the LHC collision lattice with the mixed or
unmixed configuration. The DA after the global correction
is also listed for a comparison [10]. It shows that the DA
of the LHC collision lattice can be increased to9� with the
sorting of MQX.

4 SUMMARY

The sorting scheme for the insertion quadrupoles of the
LHC IRs based on the self compensation of random field
errors in each triplet has been shown to be a very effec-
tive means to increase the dynamic aperture of the LHC
during collisions even though only a limited number of
quadrupoles are available for the sorting. Since the sort-
ing scheme is based entirely on the local compensation of
multipole field errors in each triplet, it is very robust, i.e.
the sorted lattice should be superior to unsorted one even
when other factors are included. The effectiveness of the
sorting has also been demonstrated with different working
points of the LHC [8]. It should be noted that the sorting of
magnets requires a reliable cold measurement of multipole
components of all the magnets. It is assumed that the cold
measurements will be conducted for all MQX. In this study,
we assumed that all 32 MQX of the LHC are available for
the sorting, i.e. the cold measurement of all MQX can be
completed before installing any of them. Practically, how-
ever, there will be constraints from the construction and
installation schedules which could prevent the pool of the
quadrupoles available for sorting from being large. If that
was the case, sorting would be less effective. The merit of
sorting, however, lies in the fact that it can coexist with any
other correcting measures without introducing any harmful
side effects. It therefore provides an additional measure for
controlling the effects of magnetic field errors.
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